Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sarah A. Barnett, ${ }^{\text {a }}$ Alexander J.

 Blake, ${ }^{\mathbf{a} *}$ Neil R. Brooks, ${ }^{\mathbf{a}}$ Neil R. Champness, ${ }^{\text {a }}$ Peter Hubberstey, ${ }^{\text {a }}$ Simon J. Teat ${ }^{\text {b }}$ and Martin Schröder ${ }^{\text {a }}$${ }^{\mathrm{a}}$ School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England, and ${ }^{\mathbf{b}}$ Synchrotron Radiation Department, CLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, England

Correspondence e-mail:
a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal synchrotron study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.037$
$w R$ factor $=0.088$
Data-to-parameter ratio $=20.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Dichlorobis(4-cyanopyridine)palladium(II)

In the title compound, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ cations occupy crystallographic inversion centres and adopt a slightly distorted square-planar coordination geometry. Adjacent molecules are linked into one-dimensional chains via longrange pairwise $\mathrm{Pd} \cdots \mathrm{Cl}$ interactions.

Comment

The title compound, (I), isolated during our studies into the complexes of nitrile-substituted pyridine ligands, exists as an air-stable yellow-orange solid. An X-ray study confirmed the stoichiometry of the compound (Fig. 1). Each Pd ${ }^{\mathrm{II}}$ centre lies on a crystallographic inversion centre and occupies a squareplanar environment, with both the Cl^{-}and 4-cyanopyridine ligands adopting a trans arrangement with all $\mathrm{Cl}-\mathrm{Pd}-\mathrm{N}$ angles falling within 0.75° of 90°. Thus, each $\mathrm{Pd}^{\mathrm{II}}$ cation is coordinated by two pyridyl and two Cl^{-}donors. The bond lengths fall within typical ranges expected for $\mathrm{Pd}-\mathrm{N}$ and $\mathrm{Pd}-$ Cl bonds (Orpen et al., 1989) and are comparable to those observed in trans-dichlorobis(pyridine)palladium(II) (Viossat et al., 1993).

The $\mathrm{Pd} 1 / \mathrm{N} 1 / \mathrm{N} 1^{1 i} / \mathrm{Cl} 1 / \mathrm{Cl} 1^{\text {ii }}$ plane (Fig. 1) adopts an angle of $56.5(2)^{\circ}$ with respect to the plane formed by the 4 -cyanopyridine ligands. This arrangement allows a further long-range interaction of 3.4580 (16) \AA between the $\mathrm{Pd}^{\mathrm{II}}$ cation and two Cl^{-}ligands from two separate adjacent molecules. Taking this interaction into account, a distorted octahedral environment is observed at each $\mathrm{Pd}^{\mathrm{II}}$ cation and one-dimensional chains run parallel to the crystallographic a axis (Fig. 2).

Experimental

Acicular crystals of the title compound, (I), were grown by slow diffusion of a methanolic solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ into a solution of $\left[\mathrm{Pd}(4 \text {-cyanopyridine })_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$ in MeNO_{2} over 24 h . A long crystal was used for data collection as these crystals do not survive attempts to shorten them.

Received 18 June 2002
Accepted 24 June 2002
Online 5 July 2002

Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (ii) $-x,-y, 1-z$.]

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=385.52$
Monoclinic, $P 2_{1} / n$
$a=3.8983(13) \AA$
$b=25.651(14) \AA$
$c=7.256(4) \AA$
$\beta=101.33(5){ }_{2}^{\circ} \AA^{\circ}$
$V=7711.4(6) \AA^{3}$
$Z=2$
$D_{x}=1.800 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD	1856 independent reflections
\quad diffractometer	1452 reflections with $I>2 \sigma(I)$
ω rotation with narrow frame scans	$R_{\text {int }}=0.040$
Absorption correction: multi-scan	$\theta_{\max }=29.1^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-5 \rightarrow 5$
$T_{\min }=0.336, T_{\max }=0.551$	$k=-19 \rightarrow 35$
3314 measured reflections	$l=-9 \rightarrow 4$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.088$
$S=0.93$
1856 reflections
89 parameters
H -atom parameters constrained
Synchrotron radiation
$\lambda=0.6890 \AA$
Cell parameters from 2761
reflections
$\theta=3.0-29.0^{\circ}$
$\mu=1.67 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, yellow-orange
$0.90 \times 0.04 \times 0.04 \mathrm{~mm}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Pd1-N1	$2.023(3)$	Pd1- Cl^{1}	
$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.3141(14)$		$3.4580(16)$
N1—Pd1-Cl1	$89.96(9)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl}^{\mathrm{iii}}$	
N1-Pd1-Cl1			

Symmetry codes: (i) $1+x, y, z$; (ii) $-x,-y, 1-z$; (iii) $-1-x,-y, 1-z$.
All H atoms were included at geometrically calculated positions; each was constrained to ride at a distance of $0.95 \AA$ from its parent C

Figure 2
View of the one-dimensional chains formed by $\mathrm{Pd} \cdots \mathrm{Cl}$ interactions, which are represented by dashed lines (Pd cross-hatch, Cl left-hatch, N dotted, C shaded and H small open circles).
atom. For all H atoms, displacement parameters were constrained such that $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The residual electron-density extrema lie within $1.0 \AA$ of Pd1.

Data collection: SMART (Bruker, 1998); cell refinement: LSCELL (Clegg, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

The authors thank the CCLRC for access to Station 9.8 at Daresbury Laboratory.

References

Bruker (1997). SAINT. Version 5.00. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Clegg, W. (1997). LSCELL. University of Newcastle, Newcastle upon Tyne, England.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Sheldrick, G. M. (1994). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.
Viossat, B., Dung, N.-H. \& Robert, F. (1993). Acta Cryst. C49, 84-85.

